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INTRODUCTION

The majority of particles detected in the coma of Comet Halley contain carbon atoms; many
of these grains appear to consist pre .ponderately or only of light elements. These light-element
particles may be composed of orgamc compounds. Of the possible combinations of the elements
hydrogen, carbon, nitrogen, and oxygen, numerous examples are found of particles containing
the combinations (H,C,O,N), (H,C,N), (H,C,O), and (H,C). These results may bear on the
recent detection of polyoxymethylene fragments, the observation of cyanojets (CN patterns
consistent with release from solid particles), the possible presence of cyanopolyacetylenes or

HCN polymer, and the make-up of the CHON particles. If cometary matter could reach the
surface of the earth without complete disruption, these diverse organic and mixed particles could
create unique microenvironments, possibly with significant or even pivotal prebiotic chemical

activity.

This report provides a speculative insight into possible relationships between carbon in
comets and carbon in life, as well as providing a brief overview of on-going analysis of data

from the highly successful Particle Impact Analyzer (PIA) experiment flown on the Giotto
spacecraft for the flyby of Comet Halley (development and implementation of PIA was under the
direction of J. Kissel of the Max Planck Institute for Kernphysik, Heidelberg). PIA is a time-of-

flight analyzer which obtains mass spectra of ions from individual particles imp.acting on a Pt-Ag
foil target within the instrument. It is a pleasure to acknowledge the collaboration of L. W.
Mason, who has accomplished invaluable work on data manipulation and scanning algorithms
for implementing automatic classification of the empirically-deduced particle types.

RESULTS

Particle Types

At the relative speed of 70 krn/s, particle kinetic energy is much higher than the average
molecular binding energies of the constituents, resulting in a spectrum which to first order is of
the singly-charged ions of these atoms. Several thousand instrument triggers occurred, due to
impacts and trigger noise, with at least 2,000 spectra which appear to contain interpretable
information on particle composition. The spectral lines occurring most consistently and

pervasively are those of carbon and hydrogen.

Particles of differing composition are present. A plurality of particles appear to be of cosmic

composition (major C, O, Mg, and Si; often with S and Fe, minor N, and sometimes Ca). These
are termed "mixed" particles because they almost certainly contain more than a single chemical

phase. Another group of particles consist of O, Mg, Si, and often Fe and Ca. These particles
may well be silicate minerals. A final major group, with several possible subgroups, consists of
particles predominantly of light elements. Such particles may be mostly or solely organic. The
current analysis of this latter group will be emphasized in this communication.

* PIA data analysis is supported in part by NASA, under contract JPL-956214.
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CHON Particles

The CHON particles contain the elements attributed in the name, with N sometimes higher
and other times lower than O. The discovery spectra for CHON and mixed particles are shown
in Figures 1 and 2, respectively. These are so-called mode-zero spectra, whereby the time-of-
flight mass spectrum is sampled intensively, once each 66.7 ns. For the CHON spectra, it seems
clear from this sampling that measured amplitudes from the nitrogen peak exceed the signal from
the oxygen peak. Ion yield corrections have not been applied to these data, and must be done so
before the relative atomic proportions of these two elements can be estimated. Another set of

CHON spectra are show in Figure 3. In this case, mode 1 data are shown, whereby only peaks
and follow-up samples are shown. These particular spectra have been selected for N amplitudes
less than O. A peak in the region 22-25, particularly at 23 or 24 AMU, is also often present,

indicative of Na +, Mg +, and/or C2 + from this class of particle.

(H,C,O) Particles

Many particles contain H,C, and O with no observed N. These (H,C,O) particles also

typically contain a specie producing a peak in the 23-24 region, as seen in the examples of Figure
4 and 5. It has previously been shown that this particle classification is distinct from the CHON

particles by virtue of variable relative occurrence patterns during the flythough of the Halley
coma (ref. 1, 2).

(H,C,N) Particles

Assigned to another class are particles each of which contains H, C, and N, but with no
observed O, as seen in Figure 6. Again, these particles were interpreted as a distinct class

because of their relative occurrence. It can now be reported that these particles only rarely
produce a peak at 23-24, providing an independent verification of their distinctness from the
(H,C,O) class.

(H,C) Particles

It should also be noted that many particles showing only evidence of hydrogen and carbon
are present in the spectra. Further analysis will be required to explore the possibility that these
grains might simply be a measurement artifact of one or more of the above light-element classes,
but with N, O, or both elements not producing an observed peak. This is a possibility because
of the fact that for all spectra other than the rare mode-zero samples, an automatic circuit within

the PIA instrument must determine the presence of a peak at any given time before such peak is
reported. Variability in peak shapes, not fully understood because of the difficulty in calibrating
and characterizing the instrument in the laboratory environment, can cause peaks not to be

detected. This is obvious in the occurrence of numerous spectra with only a single mass line and
other spectra of doubtful chemical interpretation (e.g., a clearly silicate composition, but with the
oxygen line missing).

DISCUSSION

Particle Characteristics

The discovery of jet patterns that imply gas-phase CN- correlated with a dust component not
following the jets of the major dust pattern (A'Hearn et al., ref. 3), the so-called cyanojets, is
presumably a result of volatilization or photo-release of from a min_ particle component. The
CHON particles were identified as the possible responsible agent. The (H,C,N) particles are, of
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Figure 1. Selected CHON spectra from the mode zero data set.
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Figure 3. Selected mode 1 spectra showing large CHON particles. The topmost spectrum could
also be classified as an (H,C,O) particle.
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Figure 5. Additional examples of (H,C,O) particles. Note the occurrence of a peak in the 22-24

range in all of these spectra.
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course, also a reasonable candidate. The possibility of polymerized hydrogen cyanide polymer

in comets has been previously proposed (ref. 4).

Likewise, both CHON and (H,C,O) could release separately observable products. The
recent recognition of polyoxymethylene (formaldehyde polymer) fragments in the gas phase (ref.

5, 6) opens the possibility that (H,C,O) grains could be the responsible source material.

The fact that the "23-24" peak occurrence pattern follows the relationship

(H,C,O)>CHON>(H,C,N) in highly, suggestive that CHON particles could be made up of
(H,C,O) and (H,C,N) constituents, 1.e., that CHON are also a mixture, or microconglomerate,
or two or more particle types, just as are the "mixed" particles.

Kissel and Krueger (ref. 7) have inferred from minor peaks in s.pectra of the PUMA sister
instrument flown on the Vega spacecraft during the Halley flyby missions that complex organic

compounds may be present.

The overall impression is that comets are made up of a variety of primary grain types, each
of which must have originated in separate times, places, and/or physicochemical conditions. As

part of the accretion process, heterogeneous agglomeration on the particle-size scale anteceded
formation of the macroscopic body we observe as the cometary nucleus.

Implications for the Origin of Life

I have recently pointed out that the diversity in cometary particulate types may have allowed
the formation of organized prebiotic chemical entities, which in turn facilitated or enabled the

origin of life. Carbon, the quintessential element in life as we understand it, is likewise the
touchstone of cometary matter in so far as regards the possible connection with life's origin.
Carbon is extraordinarily ubiquitous in Comet Halley particulates, far exceeding its relative
occurrence in any abiotic natural material so far detected on any of the rocky planetary bodies or
meteorites. Of even greater significance, however, is the apparent diversity of organic solid

phases within comets. The "mixed", CHON, (H,C,O), (H,C,N), and (H,C) classes provide the
possibility of at least five importantly different particle types, each of which is available across a
range of sizes. In an aqueous environment, many specialized and semi-compartmentalized
microenvironments would be created due to physi- and chemisorption processes as well as

particle segregation according to size, density, and hydrophilic/hydrophobic tendencies.

Although rarely, some cometary nuclei (or fragments thereof) should survive accretive
capture by planetary-sized bodies and thereby create a totally unique and localized, connected set
of such microenvironments, providing one of the most favorable natural settings conceivable for

the initiation of biogenic processes (Clark, ref. 8). The complexity of such an environment can

only barely be imagined. Bulk, intact samples of cometary nucleus material will have to become
available for direct laboratory analysis before the span of these possibilities can be

comprehensively understood. Likewise, a retrieval and return to Earth of matter from a comet
will permit a much richer understanding of the role of carbon in space chemistry and the
anticipated multiphase distribution of this exceedingly important element.
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